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Part 1: Aquarius, TEOS-10,
Density and Spice




I Fquation of State — TEOS10

1032 % Density:
Cold/Salty (+)
haline - thermal

» Spiciness:
hot/salty (+)
haline + thermal
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Density: p =pg * (1 + B:-SSS = a-SST) Spice: t =1, (1 + -SSS + a-SST)




I Aloha (Thermal Coefficient, TEOS-10)
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Using Aquarius V 4.0 Salinity and Auxiliary Temperature
Note that the range of alpha is much bigger than beta

Thermal Coefficient Alpha (K1)




| Beta (Haline Coefficient, TEOS-10)
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V4 data, Note that the range of beta is much smaller than alpha
Implications for density/spice retrievals at high latitudes!




| Sea Surface Density (Ag 4.0, TEOS-10)
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| Spiciness (now in TEOS-10 as of V3.05)

Warm/salty water is ‘spicier’ than cold/fresh water
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Part 2: An Evaluation of
Aguarius Density




1 Decomposing Density

» Decomposing density into its thermal and haline
components

» Relative to a reference of S,=35 g/kg and 0=15°C
(~standard seawater”)

» Highlighting the contribution of Aquarius, and hence the
advancement of the field through satellite SSS.

» Water mass formation/transformation

» (Constraint for interior processes (Stern (1975), Joyce
(1980), Schneider & Bhatt (2000), Schanze (2013), Bryan
(2015), Schanze & Schmitt (2015) ...)

*Standard Sea Water (SSW) is actually defined as S=35 (PSS78) and T=15°C.




I Aguarius Density (TEOS-10)

Aug 2011

Aq Density (kg/m3)
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Il Aguarius Density (Thermal Component)

Aug 2011

Aq Thermal Density relative to SSW (kg/m3)
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Seasonal Cycle, Western Boundary Currents




1 Aquarius Density (Haline Component)
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1 A Aquarius-Argo Density

Aug 2011

A Aq-EN4 Density (kg/m°)
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Amazon, Western Boundary Currents, ITCZ/Panama




1 A Ag-Argo Haline Density
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This is what Aquarius sea surface density brings to the table




Part 3: Applications of
Aguarius Density
(and Spice)




Il Applications of Surface Density & Spice

» \Water mass formation

> At low temperatures (high latitudes) alpha
approaches zero (‘low thermal effect on density’)

» While Aquarius has relatively low sensitivity at high
latitudes, B-SSS effect dominates a-SST.

» Clearly suited to study some mode water formation
processes, e.qg: Sub-Polar Mode Water (Talley,1982)

» Other intermediate water mass formation processes

» (Constraining the ocean interior through surface
processes (‘power integrals’)...




11 Power Integrals

» Power Integrals (Stern 1965, 1969, 1975)

» Assume the ocean is in steady state and stationary
(mass conservation, heat conservation, salt
conservation), then:




Power Integrals

» Simplifying a conservation equation and using the
divergence theorem (as Joyce (1980) for temperature)

polcp @5 (0Fp)dA = — j‘I Vio-w - 0dV = %ﬂ YodV

> where Xo = 2k V70’

» Down-gradient flux of properties due to stirring/mixing
» Same for salinity, density, spice

» Splitting all gradients into isopycnal (i) and diapycnal
(d)...




I Power Integrals

» Isopycnal gradients cancel in the density equation
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» Diapycnal gradients cancel in the spice equation
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Power Integrals

» Density equation relates surface forcing to diapycnal
dissipation

» Spice equation relates surface forcing to isopycnal
dissipation

» This means we can estimate the relative magnitude of
iIsopycnal to diapycnal dissipation (~mixing) in the
ocean.




1l Density Variance Production
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|1 Spice Variance Production
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Il Density/Diapycnal Dissipation Estimates
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Spice/lsopycnal Dissipation Estimates
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» Units are
(kg m3)?2 s
same as
density

» Range of

results
5-11x109
(kg m-3)2 8-1

> Close to

equipartition




11 From Monthly to Daily

» OISST daily and OAFlux v3 for Q. (2008-2009) for
thermal component

» Aguarius V4 Weekly (interpolated to daily) and GPCP
Daily v1.2 for haline component (2012-2013)

» Using daily data, X, (diapycnal) increases by 10% X,
(isopycnal) increases by 3% compared to monthly data.
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» Implications:
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» Space scales 06 [ o6
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1l Dissipation Conclusions

> Density dissipation estimate is ~6x10° (kg m=3)2 s

> Spice dissipation estimate is ~7x109 (kg m3)? s

» Suggests approximate equipartition between isopycnal
and diapycnal mixing, could be a useful constraint in
models

» Horizontal scales are much larger than vertical scales

» Use of daily data suggests greater importance of local
diapycnal dissipation




Part 4: Conclusions ano
The Future




1V Conclusions

» Operational sea surface density (and soon spiciness in V5)
products from Aquarius and SMOS.

» Significant temporal and spatial improvements over Argo

» Implications for water mass formation and transformation

» By combining surface fluxes with surface parameters, we
can diagnose interior ocean processes (Schanze, 2013,
Schanze & Schmitt, 2015, ongoing research)




The Future

» V4 currently provides TEOS-10 density from Aquarius

» /5 is planned to provide Spiciness as well (now part of
TEOS-10 since version 3.05)

» Continuity of measurements using SMOS/SMAP

» Assimilation into Ocean State Estimates?

» Local isohaline/isothermal/isopycnal/isospice budgets a /a
Walin (1982) — in preparation
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